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Abstract. We have studied quantum effects in the interaction of the exciton with a leaky quasi-mode cavity
field. When the exciton is initially prepared in a superposition state which exhibits holes in its photon-
number distribution, whereas the cavity field initially is in the vacuum state, it is found that there exists
an energy exchange between the exciton and the cavity field. The exciton and the cavity field may exhibit
sub-Poissonian distributions and quadrature squeezings. It is shown that there does not exist a violation
of the Cauchy-Schwartz inequality, which means that the correlation between the exciton and the cavity
field is classical.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments – 42.50.Dv
Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational definitions of the
phase of the field; phasemeasurements – 03.75.Fi Phase coherent atomic ensembles; quantum condensation
phenomena

1 Introduction

The quantum coherence of superposition states is a ba-
sic principle governing the quantum world. The question
why macroscopic superposition states are not observed has
been raised by Schrödinger in his famous cat paradox [1,2].
Recent experiments demonstrated that the coherent su-
perposition and its loosing process can be observed in the
laboratory, at least in the mesoscopic domain. In a recent
experiment [3], a superposition of two different coherent
states for an ion oscillating in a harmonic potential was
created as the Schrödinger cat. In another experiment [4],
two coherent states of a cavity mode were also superposed
coherently by the atoms passing the cavity with large de-
tuning. This paper is devoted to studying the quantum
effects in the interaction of the exciton with a leaky quasi-
mode cavity when the exciton is initially in a superposi-
tion state and the cavity field in a vacuum state. The
motivation to study this kind of interaction is that it is
useful for investigating the possible practical realization
of quantum information processes, such as quantum com-
puting and quantum communications [5]. This paper is
organized as follows: In Section 2, the model and its solu-
tion are briefly given. In Section 3, we discuss the energy
exchange between the exciton and the cavity field. In Sec-
tion 4, we investigate the sub-Poissonian distribution. In
Section 5, quadrature squeezings of the exciton and the
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cavity field are discussed. The exciton-cavity correlation
is investigated. At last, a conclusion is given.

2 Model

We consider a two-dimensional lattice of identical two-
level molecules (here called a quantum well) in a leaky
Fabry-Perot cavity. The Hamiltonian for the quantum well
and the cavity field under the rotating wave approxima-
tion is written as [6]

H = ~ΩSz + ~
∑

ωj â
+
j âj + ~

∑
gj(â+

j S− + âjS+) (1)

with the collective operators

Sz =
N∑
n=1

sz(n), S± =
N∑
n=1

s±(n) (2)

where sz(n) = 1
2 (|en〉〈en| − |gn〉〈gn|), s+(n) = |en〉〈gn|

and s−(n) = |gn〉〈en| are quasi-spin operators of the nth
molecule. Here |en〉 and |gn〉 are the excited state and
the ground state of nth molecule, respectively. Ω is the
transition frequency of the isolated molecules. â+

j (âj) are
creation (annihilation) operators of the field modes which
are labeled by continuous index j and the field frequency
of each mode is denoted by ωj. The coupling constant gj
between the molecules and the cavity field is determined
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by gj = ηΓ [(ωj − Ω)2 + Γ 2]−
1
2 , where η depends on the

atomic dipole and Γ is the decay rate of a quasi-mode
of the cavity with a frequency Ω. Making a bosonic ap-
proximation b̂ = S−√

N
and b̂+ = S+√

N
with [b̂, b̂+] = 1, the

interaction between the cavity field and the quantum well
occurs via excitons. Thus, equation (1) becomes

H = ~Ωb̂+b̂ + ~
∑

ωj â
+
j âj + ~

∑
g(ωj)(â+

j b̂+ b̂+âj)
(3)

where g(ωj) =
√
Ngj. The Heisenberg equations of mo-

tion for the operators of the field modes âj(â+
j ) and the

excitons b̂+(b̂) are given by

db̂
dt

= −iΩb̂− i
∑
j

g(ωj)âj ,
dâj
dt

= −iωj âj − ig(ωj)b̂. (4)

Equation (4) can be solved as [6]

b̂(t) =
[
u(t)b̂(0) +

∑
uj(t)âj(0)

]
e−iΩt (5)

âj(t) = e−iωjtâj(0) + υj(t)b̂(0) +
∑

υj,j′(t)âj′(0) (6)

where

u(t) =
[

cos
(
Θ

2
t

)
+
Γ

Θ
sin
(
Θ

2
t

)
e−

Γ
2 t

]
(7)

υj(t) = −ig(ωj)e−iωjt

∫ t

0

u(t′)ei(ωj−Ω)t′dt′ (8)

uj(t) = L−1

(
g(ωj)

p+ i(ωj −Ω)
ũ(p)

)
(9)

υj,j′(t) = −ig(ωj)e−iωjt

∫ t

0

uj(t′)ei(ωj−Ω)t′dt′ (10)

and Θ =
√

4MΓ − Γ 2 with M = Nη2L′

c , L′ is the length
of the cavity and c is the speed of the light in the vacuum.
L−1 denotes the inverse Laplace transformation,

ũ(p) =
[
p+ K̃(p)

]−1
, u(t) = L−1

[
ũ(p)

]
(11)

with K̃(p) the Laplace transformation of the general mem-
ory kernel function K(t−t′) = MΓ exp[−Γ |t−t′|] [6]. υj(t)
is also written as

υj(t) = −ig(ωj)
[

1− iΓΘ
2

]
ei(Θ2 −Ω)t−Γ2 t − e−iωjt

i(Θ2 + ωj −Ω)− Γ
2

− ig(ωj)
[

1 + iΓΘ
2

]
e−i(Θ2 +Ω)t−Γ2 t − e−iωjt

i(ωj − Θ
2 −Ω)− Γ

2

· (12)

3 Energy exchange between the exciton
and the cavity field

Considering a superposition state denoted as |ψ(ξ, φ)〉

|ψ(ξ, φ)〉 = η(
√
ξ|α1〉+ eiφ

√
1− ξ|α2〉) (13)

where η is a normalization constant

η =
[
1 + 2

√
ξ(1− ξ)Re(eiφ〈α1|α2〉)

]− 1
2

. (14)

It is shown that state |ψ(ξ, φ)〉 exhibits holes in its photon-
number distribution [7]. Note that when ξ → 1(ξ → 0),
one has that |ψ(ξ, φ)〉 → |α1〉(|ψ(ξ, φ)〉 → |α2〉), where
|αj〉(j = 1, 2) is a coherent state. Hence, the field state in
equation (13) interpolates between two arbitrary coherent
states |α1〉 and |α2〉. In reference [7], Baseia et al. assumed
that αj = reiθj (j = 1, 2) and showed that by setting ξ = 1

2
and φ + n4θ = (2m + 1)π (m = 1, 2, 3, · · · ), a hole is
burned at the component |n〉 = |N〉 if choosing

φ = (1−N/N0)π, 4θ = θ2 − θ1 = π/N0 (15)

where N0 is an integer.
If we prepare a superposition state for the system in

which the exciton initially is in the state |ψ(ξ = 1
2 , φ,4θ =

π
2 )〉 = A(|α1〉 + eiφ|α2〉), and the cavity field is in the
vacuum state Πj |0〉j (zero temperature), the whole initial
state for the exciton and the cavity field can be expressed
as

|ψ(0)〉 = A(|α1〉+ eiφ|α2〉)⊗Πj |0〉j (16)

where A is a normalization constant. The numbers of pho-
tons and excitons in this system evolve in the following
way

〈N̂aj 〉 = 2r2A2|υj(t)|2[1 + e−r
2

sin(r2 − φ)] (17)

〈N̂b〉 = 2r2A2|u(t)|2[1 + e−r
2

sin(r2 − φ)] (18)

where 2A2 = [1 + e−r
2

cos(r2 − φ)]−1. It is obvious that
there exists energy exchange between the exciton and the
cavity field in the time evolution due to the following term

〈N̂b〉 − 〈N̂aj 〉 = 2r2A2(|u(t)|2 − |υj(t)|2)

× [1 + e−r
2

sin(r2 − φ)]. (19)

Accordingly, the variances in the time evolution are
given by

〈(4N̂aj )2〉 = 2r2A2|υj(t)|2[1 + e−r
2

sin(r2 − φ)]

+ 2r4A2|υj(t)|4[1− e−r
2

cos(r2 − φ)]

− 4r4A4|υj(t)|4[1 + e−r
2

sin(r2 − φ)]2 (20)

〈(4N̂b)2〉 = 2r2A2|u(t)|21 + e−r
2

sin(r2 − φ)]

+ 2r4A2|u(t)|4[1− e−r
2

cos(r2 − φ)]

− 4r4A4|u(t)|4[1 + e−r
2

sin(r2 − φ)]2 (21)

where we have used relation [âj , â+
j ] = 1.
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4 Sub-Poissonian distributions of the exciton
and the cavity field

Sub-Poissonian photon statistics of light are one of the
best known non-classical effects [8]. We here investigate
the sub-Poissonian distributions of the exciton and the
cavity field under consideration. Following Mandel [9], the
Q parameters for the exciton and the cavity field are in-
troduced by

Qb =
〈(4N̂b)2〉
〈N̂b〉

− 1, Qa =
〈(4N̂aj )2〉
〈N̂aj 〉

− 1 (22)

Sub-Poissonian exciton (photon) statistics exist whenever
−1 ≤ Qb(a) < 0. When Qa(b) > 0, the state is called
super Poissonian while the state with Qb(a) = 0 is called
Poissonian. We now calculate Qb(a) when the system is
initially in |ψ(0)〉 = A(|α1〉 + eiφ|α2〉) ⊗Πj |0〉j. It is easy
to get that

Qa =
−r2|υj(t)|2e−r

2
[2 sin(r2 − φ) + e−r

2
]

[1 + e−r2 sin(r2 − φ)][1 + e−r2 cos(r2 − φ)]
(23)

Qb =
−r2|u(t)|2e−r

2
[2 sin(r2 − φ) + e−r

2
]

[1 + e−r2 sin(r2 − φ)][1 + e−r2 cos(r2 − φ)]
· (24)

When satisfying the inequality 2 sin(r2 − φ) + e−r
2
> 0,

we find that Qa < 0 and Qb < 0 which indicate that the
exciton and the cavity field exhibit sub-Poissonian distri-
butions.

5 Quadrature squeezings of the exciton
and the cavity field

The quadratures for the exciton and for the cavity field
are defined by

X̂b =
1
2

(b̂+ b̂+), Ŷb =
1
2i

(b̂− b̂+),

X̂a =
1
2

(âj + â+
j ), Ŷa =

1
2i

(âj − â+
j ). (25)

For the cavity field the degree of the squeezing may be
characterized by the squeezing parameters [10]

S1a = 2〈N̂aj 〉+ 2 Re〈â2
j〉 − 4(Re〈âj〉)2 (26)

S2a = 2〈N̂aj 〉 − 2 Re〈â2
j〉 − 4(Im〈âj〉)2. (27)

If S1a or S2a is in the range (−1,0), we say the cavity field
exhibits quadrature squeezing. There are similar formulas
for the excitons. We easily obtain for the system |ψ(0)〉 =

A(|α1〉+ eiφ|α2〉)⊗
∏
j |0〉j ,

S1a = 4r2A2|υj(t)|2[1 + e−r
2

sin(r2 − φ)]

− 4r2|υj(t)|2A2e−r
2

sin(2τ + 2θ1) sin(r2 − φ)

− 16r2|υj(t)|2A4 cos2

(
θ1 +

π

4
+ τ

)
×
[√

2
2

+ e−r
2

cos
(
r2 − φ− π

4

)]2

(28)

S2a = 4r2A2|υj(t)|2[1 + e−r
2

sin(r2 − φ)]

+ 4r2|υj(t)|2A2e−r
2

sin(2τ + 2θ1) sin(r2 − φ)

− 16r2|υj(t)|2A4 sin2

(
θ1 +

π

4
+ τ

)
×
[√

2
2

+ e−r
2

cos
(
r2 − φ− π

4

)]2

(29)

where we have set υj(t) = |υj(t)|eiτ . It is easy to find
that if selecting r2 = φ and θ1 + τ = π

4 , S1a > 0 and
S2a < 0, which means that for the cavity field, the Ya com-
ponent exhibits quadrature squeezing, but the Xa compo-
nent does not.

Similarly, the expressions of S1b and S2b for the exciton
are given by

S1b = 4r2A2|u(t)|2[1 + e−r
2

sin(r2 − φ)]

− 4r2A2|u(t)|2e−r
2

sin(2φu − 2Ωt+ 2θ1) sin(r2 − φ)

− 16r2A4|u(t)|2 cos2

(
θ1 +

π

4
+ φu −Ωt

)
×
[√

2
2

+ e−r
2

cos
(
r2 − φ− π

4

)]2

(30)

S2b = 4r2A2|u(t)|2
[
1 + e−r

2
sin(r2 − φ)

]
+ 4r2A2|u(t)|2e−r

2
sin(2φu − 2Ωt+ 2θ1) sin(r2 − φ)

− 16r2A4|u(t)|2 sin2

(
φu −Ωt+ θ1 +

π

4

)
×
[√

2
2

+ e−r
2

cos
(
r2 − φ− π

4

)]2

(31)

where φu is determined by u(t) = |u(t)|eiφu . If setting
r2 = φ and φu − Ωt + θ1 = π

4 , we find that S1b > 0
and S2b < 0 , which indicate that for the exciton, the
Yb component exhibits quadrature squeezing, but the Xb

component does not.

According to the above discussions, we conclude that
the exciton and the cavity field may exhibit quadrature
squeezing if properly adjusting parameters of the exciton-
cavity system.
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6 Exciton-cavity correlation

Correlation between the exciton and the cavity field may
be characterized by the second-order correlation func-
tion (SOCF)

Qab = g
(2)
ab (0)− 1, g

(2)
ab (0) =

〈N̂aj N̂b〉
〈N̂aj 〉〈N̂b〉

· (32)

The function Qab vanishes for uncorrelated states; it
is positive for correlated states and negative for anti-
correlated states.

For a system consisting of two bosonic modes (say a
and b), there is the Cauchy-Schwartz inequality (CSI) [11]

[g(2)
ab (0)]2 ≤ g(2)

a (0)g(2)
b (0) (33)

where g(2)
a (0) and g

(2)
b (0) are the second-order zero time

correlation functions which are related to Mandel’s Q pa-
rameters by

g(2)
a (0) = 1 +

Qa

〈N̂a〉
, g

(2)
b (0) = 1 +

Qb

〈N̂b〉
(34)

where Qa and Qb are defined by equation (22).
It is shown [12] that the violation of the CSI can be

accompanied by violation of Bell’s inequality. If equa-
tion (33) is violated, the correlation between the two
modes is non-classical, which can be described by

I0(t) =

[
g

(2)
a (0)g(2)

b (0)
] 1

2

g
(2)
ab (0)

− 1 (35)

which is negative if equation (33) is violated. It is easy to
calculate that

〈N̂aj N̂b〉 = 2A2|u(t)|2|υj(t)|2r4[1− e−r
2

cos(r2 − φ)].
(36)

Substituting equations (17, 18, 36) into equation (32), we
have

Qab =
−e−r

2
[e−r

2
+ 2 sin(r2 − φ)]

[1 + e−r2 sin(r2 − φ)]2
· (37)

When satisfying the inequality 2 sin(r2 − φ) + e−r
2
> 0

(under this condition, the exciton and the cavity field may
exhibit sub-Poissonian distributions, respectively), we find
that Qab < 0, which means that the correlation between
the exciton and the cavity field is anti-correlated. In order
to check whether the correlation is non-classical, we need
to calculate equation (35).

Noticing that

g
(2)
ab (0) = g(2)

a (0) = g
(2)
b (0)

=
1− e−2r2

cos2(r2 − φ)
[1 + e−r2 sin(r2 − φ)]2

· (38)

It is easy to find that I0(t) = 0, which means that the cor-
relation between the exciton and the cavity field is classical
and no violation of the CSI occurs.

7 Conclusions

In this paper, we have studied quantum effects in the in-
teraction of the exciton with a leaky quasi-mode cavity
field. When the exciton is initially prepared in a super-
position state which exhibits holes in its photon-number
distribution, whereas the cavity field initially is in the vac-
uum state, it is found that there exists a energy exchange
between the exciton and the cavity field. The exciton and
the cavity field may exhibit sub-Poissonian distribution
and quadrature squeezing, respectively. It is shown that
there does not exist a violation of the Cauchy-Schwartz
inequality, which means that the correlation between the
exciton and the cavity field is classical.
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